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Abstract

This article presents a scheme for a semi-classical model of electromagnetic wave propagation in a non-centro-

symmetric crystal of KDP. The model was throughfully described in [A Maxwell–Bloch model with discrete symmetries

for wave propagation in nonlinear crystals: an application to KDP (submitted)]. It uses Maxwell�s equations to describe

the wave field and Bloch�s equations for the medium at the quantum-mechanical level. We extend the Yee [Compu-

tational Electrodynamics: The Finite-difference Time-domain Method, second ed., Artech House, Boston, MA, 2000;

IEEE Trans. Antennas Propag. AP-14 (1966) 302] scheme, in the undimensional case, used for isotropic media to treat

the case of a KDP crystal, while ensuring an accurate scheme. Finally, several numerical simulations are performed.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The development of laser able to produce ultra-short pulses requires the elaboration of new, adequate

models to describe nonlinear dispersion as well as polarization effects in the wave–crystal interaction. In-
deed, for powerful laser sources, classical models like systems of nonlinear Schr€odinger equations [3,19] are
no longer valid. For such pulses, the hypothesis of monochromatic waves is no longer relevant. This re-

quires a time-domain description rather than a spectral one as used in classical nonlinear optics [2,3,12,17].

Besides, for some very important practical applications such as second harmonic generation in a crystal, it

has become necessary to develop models to study the interplay between anisotropy and nonlinearities in a

material. Several macroscopic models such as [7] describe the average response of the medium over large

scales and a large assembly of atoms, and in particular over distances larger than the wavelength. At

variance, microscopic models describe the response on sub-wavelength scales and account for microscopic
physics in a fairly accurate way. The Bloch model is one of these microscopic models.
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In [4], we showed that the Bloch model could be more appropriate than classical macroscopic models

when modeling wave–matter interaction in the case of ultrashort laser pulses. In [4], we have extended the

Bloch model to the case of a crystal of KDP, bearing in mind that it could be extended to a large class of
crystals.

In the Bloch model, the medium is described locally by a density matrix whose diagonal elements

represent the population, while the off-diagonal elements represent the quantum coherences of a set of

atomic states. The density matrix evolves according to both the atomic and wave-hamiltonians. While

matter is treated quantum-mechanically, the wave-field is treated classically through Maxwell�s equations.
The model can thus be referred to as ‘‘semi-classical’’, according to the often-used terminology. The wave-

hamiltonian involves the matrix of dipolar moments, which describes how matter reacts to the wave-field at

the microscopic level. The model described in [4] gives us all the microscopic knowledge we need on the
crystal. The next logical step is therefore to discretize this model.

The discretization of Maxwell–Bloch equations for isotropic media (e.g. gas) has already been deeply

studied [5,27]. A new difficulty appears when considering anisotropic media, since some simplifications

made in the isotropic case are no longer relevant. The different components of the electromagnetic field are

no longer decoupled. We have to find an accurate scheme for such a material.

In physical experiments such as the study of second harmonic generation in a non-centro-symmetric

crystal, the direction of propagation of the wave is not parallel to any of the optical axes of the crystal. The

Maxwell equations are naturally written in a referential associated with the wave with one of its axis parallel
to the direction of propagation. The dipolar moment matrix and by consequence the Bloch equations are

written in a referential given by the symmetries of the crystal. That is to say, the Maxwell equations de-

scribing the evolution of the electromagnetic field and the Bloch equations describing the matter evolution

are not written in the same axes. This does not ease the discretization process and we shall show how to

overcome this problem.

We restrict ourselves to the case of unidimensional electromagnetic fields. The electric field E and the

magnetic field B depend only on one variable in space in the direction of the incoming wave. This is a first

step toward the validation of our model [4]. The bidimensional study is a work in progress [20] and will be
published later.

The organization of this paper is as follows: Section 2 quickly exposes the physical context and the

Maxwell–Bloch model.

In Section 3, we shall start by recalling the classical Yee scheme providing a discretization scheme for the

electromagnetic field in Maxwell equations. These equations also involve the polarization, which we will

then discretize. Finally, we will write a scheme for the Bloch equations describing the matter evolution.

Throughout the complete discretization of the Maxwell–Bloch equations, we try to highlight the methods

used to ensure a second order scheme.
In Section 4, we describe the boundary conditions we have used to perform numerical simulations.

Eventually, in Section 5, we perform several numerical experimentations to check the validity of our

model.
2. Physical context

2.1. Experimental setup

In this paper, let us consider the following experimental setup. A wave-field propagates in a linear

medium, before traveling through a uniaxial crystal.

The linear index of the medium is chosen to minimize the reflexion of the wave at the interfaces with the

crystal.
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Let us start by recalling the definition of the optical axis for a uniaxial crystal. In full generality, in any

material, the coordinates of the linear polarization Pð1Þ are written P ð1Þ
i ¼

P
j ~eijEj, where ~e is the two-

dimensional tensor of linear susceptibility of the medium and E the electric field. In a uniaxial crystal, one
can find a set of axes Rc ¼ ðu; v;wÞ (which we shall call the crystalline axes) where the linear polarization

coordinates in these axes can be expressed as

P ð1Þ
i ¼ ~eiiEi;

where ~euu ¼ ~evv 6¼ ~eww. The direction of the vector w is called the optical axis of the crystal.

We denote by z (see Fig. 1) a unit vector parallel to the direction of propagation of the incoming plane

wave. We consider plane waves and we shall denote by ðx; yÞ, two unit vectors spanning the plane of the

wave (Fig. 1). We shall call R ¼ ðx; y; zÞ the wave axes. In practical experiments, the direction of propa-
gation of the wave and the optical axis of the crystal are not parallel. For instance, the phase matching

condition for harmonic generation can be satisfied by rotating the crystal. Once rotated, the crystal is cut to

ensure a normal incidence of the wave as shown in Fig. 1.

2.2. Maxwell equations

The incoming plane wave is represented by the pair ðE;BÞ, where E is the electric field and B the

magnetic induction. The fields E and B obey the Maxwell equations:

otB ¼ �rot E;

otE ¼ 1

l0

e�1rot B� e�1otP;

div B ¼ 0;

div D ¼ 0;

ð2:1Þ

where e is the static linear tensor of the medium in which the wave travels. We recall that D ¼ eEþ P. The

tensor e is diagonal in the crystalline axes Rc, but for instance in the wave axes R it may have far more non-

vanishing coefficients.

The interaction with the crystal is modeled by the polarization P, which is obtained through the Bloch
equation (2.5).

The waves propagate along the direction z (see Fig. 1) and we shall make the assumption that the fields E

and B depend only on the z variable in space. Then, the previous system (2.1) can be simplified as
KDP crystal

Linear medium
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Fig. 1. Geometry of the experiment.
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otBx ¼ ozEy ;

otBy ¼ �ozEx;

otEx ¼
1

l0

½�ðe�1ÞxxozBy þ ðe�1ÞxyozBx� � ðe�1ÞxxotPx � ðe�1ÞxyotPy � ðe�1ÞxzotPz;

otEy ¼
1

l0

½ðe�1ÞyyozBx � ðe�1ÞyxozBy � � ðe�1ÞyxotPx � ðe�1ÞyyotPy � ðe�1ÞyzotPz;

ozBz ¼ 0;

ozDz ¼ 0:
Remark 1. According to the Maxwell equations, the third component Bz of the magnetic field has to verify

ozBz ¼ otBz ¼ 0. Thus we do not need to compute this coordinate of the magnetic field. The Amp�ere
equations on Ez does not yield anything more on Ez than the equation ozDz ¼ 0.

2.3. Bloch equations

We use a quantum model to represent the crystal. A quantum system is represented by a wave-function w
(see [21] for instance). The evolution of w is driven by the Schr€odinger equation:

i�hotw ¼ Hw;

where the Hamiltonian H is classically decomposed in H ¼ H0 þ V , H0 being the free Hamiltonian and V
the potential resulting from the action of the electromagnetic field.

Let us first introduce some notations. We make the assumption that the free Hamiltonian H0 has N
distinct eigenvalues: E1 ¼ �hx1; . . . ;EN ¼ �hxN . For convenience, we write xnm ¼ xn � xm.

We shall denote by dn the multiplicity of the eigenvalue En. For each level n, we choose a basis of ei-

genstates ðwðn;1Þ; . . . ;wðn;dnÞÞ. For each pair of eigenstates ðwðl;rÞ;wðm;sÞÞ, we can compute

lðl;rÞðm;sÞ � hwðl;rÞ; rwðm;sÞi; ð2:2Þ

where h; i is the canonical inner product and r is the position operator. The matrix l is called the dipolar

matrix. It is a square matrix of dimension
P

n dn whose coefficients are vectors in C3. It shall be noted

that the dipolar matrix depends on the chosen referential for the position operator r. In [4], we have

computed the dipolar matrix for the KDP in the crystalline axes Rc. Indeed in the crystalline axes, the

symmetries of the crystal translate into vanishing coefficients of the dipolar matrix l.

In the dipolar approximation, V is given by

V ¼ �l � E: ð2:3Þ

Let us now introduce a statistical description of the system since a large number of atoms interact with the

wave. We introduce the density matrix q described in [21] for instance. Let us recall that the diagonal el-

ements of the density matrix represent the population levels of the corresponding eigenspace of the free

Hamiltonian, while the off-diagonal terms represent the coherences between these levels.

It is straightforward (e.g. see [8]) to show that the density matrix q obeys the Bloch equations:

otqjk ¼ �iðxj � xkÞqjk �
i

�h
½V ; q�jk ¼ �ixjkqjk þ

i

�h
½l � E; q�jk ð2:4Þ

for all 16 j; k6N , where we recall ½A;B� ¼ AB� BA.
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Remark 2. Eq. (2.5) does not include phenomenological relaxation terms to render spontaneous emission

of light, vibrations in crystal lattices. This would not add any complexity to the derivation of the scheme

(see in [6] several methods for including these phenomena in the Bloch equations). Besides, in the time-scale

we are considering, the relaxation effects would have been negligible.

To simplify the equations, we introduce the operator Rn defined by RnðqÞjk ¼ �ixjkqjk. The two sets of

Eqs. (2.1) and (2.5) are related by the polarization P which is given by

P ¼ N tr ðlqÞ; ð2:5Þ

where N is the density of molecules per unit volume.

Hence Eqs. (2.1), (2.4) and (2.5) form a closed system.
2.4. Equations rotation

The two systems (2.1) and (2.5) are written in two different sets of axes. Indeed, the Maxwell equations

are naturally expressed in a referential (R) associated with the direction of propagation of the wave. The

Bloch equations are written in the referential (Rc) chosen for the dipolar moment matrix l. Furthermore,
the tensor e involved in the Maxwell equations is diagonal in Rc.

We could have kept both equations in their respective axes but then, we would have had to rotate the

electric field E and the polarization P for each time-step before solving the Bloch (2.5) or Maxwell (2.1)

equations.

We could also have written both equations in the crystalline axes Rc. Since the tensor e (or its inverse) is

diagonal in Rc, there would have been only be one coordinate of the polarization involved in each of the

Amp�ere equations. Yet the space-derivatives of the electromagnetic field would have become far more

complex to express.
That is why we have eventually chosen to write the Bloch equation (2.5) in the wave axes R. The main

drawback of this approach is that the tensor e involved in Maxwell equations (2.1) is not necessarily di-

agonal. We will see how to reduce the number of its non-vanishing terms.

The dipolar matrix l depends on the chosen axes. In Eq. (2.5) the space variable acts as a parameter and

only the time-derivatives of the density matrix q appear in (2.5). Hence to write Eq. (2.5) in the correct

referential, we only need to rotate the dipolar matrix l given by Eq. (2.2). That is we just have to rotate the

position operator. Let R be a rotation. The dipolar matrix in the referential RðRcÞ is the matrix
~l ¼ ðR�1lijÞij. To write the Bloch equations in RðRcÞ, we take ~l as the dipolar matrix.

Now we show how to choose the two vectors ðx; yÞ spanning the plane wave, to maximize the number of

vanishing coefficients of the tensor e and its inverse.

Let us first define h as the angle between the extraordinary axis w of the crystal and the direction of

propagation z of the wave. We denote by z�, the projection of z on the plane hu; vi. We can then define the

angle / between u and z�.

We define the following vectors by their coordinates on Rc

x ¼
cos h cos/
cos h sin/
� sin h

0
@

1
A;
y ¼
� sin/
cos/
0

0
@

1
A:
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The two vectors ðx; yÞ span the wave plane.

Now we give the form of the tensor e in the referential R ¼ ðx; y; zÞ. In Rc its expression is

e ¼
e? 0 0

0 e? 0

0 0 ek

0
@

1
A;

where e? and ek are two real numbers.

Given the rotation matrix from Rc to R, we can write its expression in the wave axes R:

e ¼
e? cos2 hþ ek sin

2 h 0 cos h sin hðe? � ekÞ
0 e? 0

cos h sin hðe? � ekÞ 0 e? sin2 hþ ek cos2 h

0
@

1
A;

its inverse is given by

g � e�1 ¼

e? sin2 hþek cos
2 h

e?ek
0 � cos h sin hðe?�ekÞ

e?ek

0 1
e?

0

� cos h sin hðe?�ekÞ
e?ek

0
e? cos2 hþek sin

2 h

e?ek

0
BB@

1
CCA:

By carefully choosing the axes, we were able to cancel four terms of the static tensor e.
2.5. Summary of the equations to be solved

From the equation div D ¼ 0, we get ozDz ¼ 0. Thus the third component of the vector D does not

depend on the space variable z. We take Dzðz ¼ 0Þ ¼ 0, then Dz ¼ 08z. Using the expression of D, we get an
expression of Ez,

Ez ¼
�Pz � ezxEx � ezyEy

ezz
;

since D ¼ eEþ P. The magnetic field satisfies ozBz ¼ 0, we choose to set Bzðz ¼ 0Þ ¼ 0, so Bz ¼ 0, 8z.
As we have shown, by choosing an adequate expression of the rotation, we can cancel some terms of the

tensor e. Then, the system can be simplified a little more.

The equations describing the evolution of the first two coordinates of the electric field E become

otEx ¼ � gxx
l0

ozBy � gxxotPx � gxzotPz;

otEy ¼
gyy
l0

ozBx � gyyotPy :
ð2:6Þ

The third component of the electric field E is given by

Ez ¼
�Pz � ezxEx

ezz
: ð2:7Þ

In Eqs. (2.6) and (2.7), the polarization term is obtained from the Bloch equation (2.5)

otqjk ¼ �ixjkqjk þ
i

�h
½l � E; q�jk; 16 j; k6N ;

by P ¼ N tr ðlqÞ.
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The magnetic field B evolves with the equations

otBx ¼ ozEy ;

otBy ¼ �ozEx:
ð2:8Þ

We do not need to compute the last coordinate of the magnetic field since Bz ¼ 0.
3. Discretization

In the previous section, we wrote the system of equations that we now intend to solve numerically.

Before proceeding with numerical experimentations, we need a scheme for discretizing these equations. We
also wish to keep a second order scheme. Let us start with a classical part: the Yee scheme [23,25]. In order

to ensure a second order scheme, we should however proceed carefully when coupling the Maxwell (2.1)

and Bloch (2.5) equations, as can be seen in the final part of this section.

3.1. A scheme for the Maxwell equations

We need a scheme for the Maxwell equations (2.1). As stated before, our scheme is based on the classical

Yee scheme [25] but needs to be adapted to include the polarization P and the density matrix q.
Classically, we discretize the electric fieldE and themagnetic fieldB shifted by half a step in time as in Fig. 2.

The polarization P is estimated on the same points as the electric field E and q on the same points as the

magnetic field B (see Fig. 2).

For a function u defined on the grid, we write un;m for the value of u at the grid point ðzm; tnÞwhere tn ¼ ndt,
zm ¼ mdz. We also use the notation vn;m for vðzm; tnÞ when v is defined for continuously varying ðz; tÞ.

The Faraday equations (2.8) do not depend on q, they are easily discretized

B
nþ1

2
x � B

n�1
2

x

dt
¼ ozEn

y ;

B
nþ1

2
y � B

n�1
2

y

dt
¼ �ozEn

x ;

ð3:1Þ
B, r

E, P

n + 1
2

n

n – 1
2

n –1

m m + 1m – 1
2 m + 1

2

z

t

Fig. 2. Yee�s scheme.
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which gives us a scheme of order 2. Hence, given the electric field En at time tn, we can compute the

magnetic field Bnþ1
2 at time tnþ

1
2.

We then write the Amp�ere equations (2.6) for time tnþ
1
2:

Enþ1
x � En

x

dt
¼ 1

l0

ð�gxxozB
nþ1

2
y Þ � gxxðotPxÞ

nþ1
2 � gxzðotPzÞ

nþ1
2;

Enþ1
y � En

y

dt
¼ 1

l0

ðgyyozBnþ1
2

x Þ � gyyðotPyÞ
nþ1

2:

ð3:2Þ

The terms corresponding to the polarization are still to be determined. They relate the wave with the crystal

and, through the Bloch equations, involve the electric field E. The time derivation of the polarization P is

not discretized. We will compute the explicit derivative before taking its value. The various methods used to

discretize the polarization term obtained through the Bloch equations were described in [5].
The space discretization is straightforward, as we describe later on.

3.2. The discretization of the polarization field

Up to now, we have used the classical scheme of Yee. In this section, we will show how to discretize the

polarization P and the density matrix q to obtain a scheme of order 2 for the Maxwell–Bloch system. This is

far more complex to achieve than in the isotropic case (as already described in [5]).

In our case, the polarization is not necessarily parallel to the electric field and its time-derivatives appearing
in (2.6) depend on the electric field. Furthermore, the two directions x and y are no longer independent.

Let us begin with the Amp�ere equations (2.6), which involve the polarization. We first compute the

expression of time-derivative of the polarization otP as a function of the electric field E and the density

matrix q.
Let us recall that the polarization P ¼ ðPx; Py ; PzÞ is given by

Px ¼ N tr ðlxqÞ;
Py ¼ N tr ðlyqÞ;
Pz ¼ N tr ðlzqÞ:

We are interested in the time-derivatives of the polarization. To express the polarization P, we use the Bloch

equation (2.5). We have

otPd ¼ N tr ðldotqÞ; d 2 fx; y; zg;

then the Bloch equations give us

otPd ¼ N tr ðldRnðqÞÞ � iN

�h
tr ðld ½V ; q�Þ; d 2 fx; y; zg:

We write the previous equation at tnþ
1
2,

ðotPdÞnþ
1
2 ¼ N tr ðldRnðqnþ1

2ÞÞ � iN

�h
tr ðld ½V nþ1

2; qnþ1
2�Þ: ð3:3Þ

We have to compute the value of the potential V, which involves the electric field and the dipolar moment

matrix, at time tnþ
1
2. The potential V nþ1

2 is given by

Vnþ1
2 ¼ Vnþ1 þ Vn

2
;
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hence it is obtained from En and Enþ1, the approximation of the electric field Enþ1
2 at time tnþ

1
2 being

1
2
ðEn þ Enþ1Þ.
Replacing the potential V by its expression, we can develop Eq. (3.3)

ðotPdÞnþ
1
2 ¼ N tr ðldRnðqnþ1

2ÞÞ þ iN

�h
En
x þ Enþ1

x

2
tr ðld ½lx; q

nþ1
2�Þ þ iN

�h

En
y þ Enþ1

y

2
tr ðld ½ly ; q

nþ1
2�Þ

þ iN

�h
En
z þ Enþ1

z

2
tr ðld ½lz; q

nþ1
2�Þ:

At this stage, we need to compute the value qnþ1
2 of the density matrix at time tnþ

1
2. This implies solving the

Bloch equations, as will be shown this in the next section. For the time being, we shall make the assumption

that qnþ1
2 is known.

Yet, the third component of the electric field E is not given by the Amp�ere equations. We need another

equation to compute Enþ1
z . We then use Eq. (2.7):

Enþ1
z ¼ �Pnþ1

z � ezxEnþ1
x

ezz
:

Moreover the polarization Pz is given by

Pnþ1
z ¼ Pn

z þ dtðotPzÞnþ
1
2;

which is a second order approximation.

As before, we take(3.3):

ðotPzÞnþ
1
2 ¼ N tr ðlzRnðqnþ1

2ÞÞ � iN

�h
tr ðlz½V nþ1

2; qnþ1
2�Þ:
Remark 3. The term ðotPzÞnþ
1
2 does not depend on Ez since we have:

trðlz½Ezlz; q�Þ ¼ Ez tr ðlz½lz; q�Þ ¼ Ez tr ðl2
zq� lzqlzÞ ¼ 0:

Hence, to express Ez, we get

Enþ1
z ¼

�Pn
z � dtN tr ðlzRnðqnþ1

2ÞÞ þ idtN
�h tr ðlz½V nþ1

2; qnþ1
2�Þ � ezxEnþ1

x

ezz
:

Once again, we need to replace the potential Vnþ1
2 by its expression as a function of the dipolar moment

matrix l and the electric field Enþ1
2 at time tnþ

1
2. The term tr ðlz½V nþ1

2; qnþ1
2�Þ gives

tr ðlz½V nþ1
2; qnþ1

2�Þ ¼ �En
x þ Enþ1

x

2
tr ðlz½lx; q

nþ1
2�Þ �

En
y þ Enþ1

y

2
tr ðlz½ly ; q

nþ1
2�Þ:

To simplify the expressions, let us introduce the following notation:

T
nþ1

2

d;d 0 �
iN

2�h
tr ðld ½ld 0 ; q

nþ1
2�Þ;

T
nþ1

2

d � N tr ðldRnðqnþ1
2ÞÞ;

where d; d 0 2 fx; y; zg.
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It thus becomes easier to read the expression of Enþ1
z :

Enþ1
z ¼ �dt T

nþ1
2

z;x � ezx
ezz

Enþ1
x � dt T

nþ1
2

z;y

ezz
Enþ1
y � Pn

z

ezz
� dt T

nþ1
2

z

ezz
� dt T

nþ1
2

z;x

ezz
En
x �

dt T
nþ1

2
z;y

ezz
En
y :

We can then write the time derivatives of the polarization as functions of the electric field:

ðotPxÞnþ
1
2 ¼ � T nþ1

2
x;z

dt T
nþ1

2
z;x þ ezx
ezz

Enþ1
x þ T nþ1

2
x;y

 
� T nþ1

2
x;z

dt T
nþ1

2
z;y

ezz

!
Enþ1
y � T

nþ1
2

x;z

ezz
P n
z þ T nþ1

2
x;z En

z

þ T nþ1
2

x � T nþ1
2

x;z

dt
ezz

T nþ1
2

z � T nþ1
2

x;z

dt T
nþ1

2
z;x

ezz
En
x þ T nþ1

2
x;y

 
� T nþ1

2
x;z

dt T
nþ1

2
z;y

ezz

!
En
y ;
ðotPyÞnþ
1
2 ¼ T nþ1

2
y;x

 
� T nþ1

2
y;z

dt T
nþ1

2
z;x þ ezx
ezz

!
Enþ1
x � T nþ1

2
y;z

dt T
nþ1

2
z;y

ezz
Enþ1
y � T

nþ1
2

y;z

ezz
P n
z þ T nþ1

2
y;z En

z

þ T nþ1
2

y � T nþ1
2

y;z

dt
ezz

T nþ1
2

z þ T nþ1
2

y;x

 
� T nþ1

2
y;z

dt T
nþ1

2
z;x

ezz

!
En
x � T nþ1

2
y;z

dt T
nþ1

2
z;y

ezz
En
y ;
ðotPzÞnþ
1
2 ¼ T nþ1

2
z;x Enþ1

x þ T nþ1
2

z;y Enþ1
y þ T nþ1

2
z þ T nþ1

2
z;x En

x þ T nþ1
2

z;y En
y :
3.3. The Bloch equations

We now use a modified version of the method described in [5] to keep a second-order scheme. We solve

the Bloch equations with a splitting scheme.
Let us recall that the density matrix q is driven by Eq. (2.5)

otqjk ¼ �ixjkqjk �
i

�h
½V; q�jk

for all 16 j; k6N .

We solve separately each of its components. We start with the operator corresponding to the interaction
of the electric field E on the medium, and thus we consider the equation

otq ¼ � i

�h
½V; q�: ð3:4Þ

Eq. (3.4) is solved exactly by

qðtÞ ¼ e
� i

�h

R t

0
VðsÞ dsqð0Þe

i
�h

R t

0
VðsÞ ds

:

Numerically, we have to approximate the integral and the exponential terms. The integral is approached by

the centered rectangles method which is of order 2

Z ðnþ1
2
Þdt

ðn�1
2
Þdt

V ðsÞ ds � dtV n:
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Given a matrix M , we approach its exponential by

expM � I
�

� 1

2
M
��1

ðI þ 1

2
MÞ;

which is also a second order approximation of the exponential.

We shall call SH, the solving operator of this part of the splitting.

We now solve the part of Eq. (2.5) involving the free hamiltonian. We have to solve

otqjk ¼ �ixjkqjk

for all 16 j; k6N . The explicit solution is clearly

qjkðtÞ ¼ expð�ixjktÞqjkð0Þ:
Remark 4. Since there is no relaxation terms in the equations, the atomic populations (diagonal terms of

the density matrix q) only evolve through the action of the electric field E.

We shall call SH0
, the solving operator of this part of the splitting.

As we wish to obtain an accurate overall scheme, we use a Strang method, which is of order 2

qnþ1
2 ¼ S

1
2

H0
SHS

1
2

H0
qn�1

2: ð3:5Þ
3.4. Final scheme

Collecting the above equations, Eq. (2.8) becomes

B
nþ1

2
;mþ1

2
x � B

n�1
2
;mþ1

2
x

dt
¼

En;mþ1
y � En;m

y

dz
;

B
nþ1

2
;mþ1

2
y � B

n�1
2
;mþ1

2
y

dt
¼ �En;mþ1

x � En;m
x

dz
:

For the Bloch equation (2.5), the space variable z acts as a parameter, as we discretized q on the same points

as E.

The system (3.2) then becomes

Enþ1;m
x � En�1;m

x

dt
¼ 1

l0

 
� gxx

B
nþ1

2
;mþ1

2
y � B

nþ1
2
;m�1

2
y

dz

!
� gxxðotPxÞ

nþ1
2
;m � gxzðotPzÞ

nþ1
2
;m
;

Enþ1;m
y � En�1;m

y

dt
¼ 1

l0

gyy
B
nþ1

2
;mþ1

2
x � B

nþ1
2
;m�1

2
x

dz

 !
� gyyðotPyÞ

nþ1
2
;m
;

the polarization terms do not involve space derivatives, and we replace the space-derivatives of the mag-

netic field by their discretized expression in system (3.6).

Then, we replace the time-derivatives of the polarization P by their expressions in the Amp�ere equations
(3.2):
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Enþ1;m
x ¼ dt gxx

dt T
nþ1

2
;m

z;x þ ezx
ezz

T nþ1
2
;m

x;z

 
� gxzT

nþ1
2
;m

z;x

!
Enþ1;m
x

� dt gxx T nþ1
2
;m

x;y

" 
� T nþ1

2
;m

x;z

dt T
nþ1

2
;m

z;y

ezz

#
þ gxzT

nþ1
2
;m

z;y

!
Enþ1;m
y þ cnþ

1
2
;m

x ;
Enþ1;m
y ¼ �dt gyy T nþ1

2
;m

y;x

" 
� T nþ1

2
;m

y;z

dt T
nþ1

2
;m

z;x þ ezx
ezz

#!
Enþ1;m
x þ dt gyyT

nþ1
2
;m

y;z

dt T
nþ1

2
;m

z;y

ezz

 !
Enþ1;m
y þ cnþ

1
2
;m

y ;

where c
nþ1

2
;m

x and c
nþ1

2
;m

y are terms depending only on variables computed before time tnþ
1
2. They are given by:

cnþ
1
2
;m

x ¼ En;m
x þ dt

l0

 
� gxx

B
nþ1

2
;mþ1

2
y � B

nþ1
2
;m�1

2
y

dz

!
� gxxdt T

nþ1
2
;m

x � gxzdt T
nþ1

2
;m

z

þ dt gxx
P n;m
z

ezz

��
� En;m

z

�
T nþ1

2
;m

x;z

�
þ dt gxx

dt T
nþ1

2
;m

z;x

ezz
T nþ1

2
;m

x;z

 
� gxzT

nþ1
2
;m

z;x

!
En;m
x

þ ðdtÞ2 gxx
ezz

T nþ1
2
;m

x;z T nþ1
2
;m

z � dt gxx T nþ1
2
;m

x;y

" 
� T nþ1

2
;m

x;z

dt T
nþ1

2
;m

z;y

ezz

#
þ gxzT

nþ1
2
;m

z;y

!
En;m
y ;
cnþ
1
2
;m

y ¼ En;m
y þ dt

l0

gyy
B
nþ1

2
;mþ1

2
x � B

nþ1
2
;m�1

2
x

dz

 !
� gyydt T

nþ1
2
;m

y þ dt gyy
P n;m
z

ezz

��
� En;m

z

�
T nþ1

2
;m

y;z

�

� dt gyy T nþ1
2
;m

y;x

" 
� T nþ1

2
;m

y;z

dt T
nþ1

2
;m

z;x

ezz

#!
En;m
x þ ðdtÞ2

gyy
ezz

T nþ1
2
;m

y;z T nþ1
2
;m

z;y En;m
y þ ðdtÞ2

gyy
ezz

T nþ1
2
;m

y;z T nþ1
2
;m

z :

We write the linear system on Enþ1;m
x and Enþ1;m

y

1

"
� dt gxx

dt T
nþ1

2
;m

z;x þ ezx
ezz

T nþ1
2
;m

x;z

 
� gxzT

nþ1
2
;m

z;x

!#
Enþ1;m
x

þ dt gxx T nþ1
2
;m

x;y

" 
� T nþ1

2
;m

x;z
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nþ1

2
;m

z;y

ezz

#
þ gxzT

nþ1
2
;m

z;y

!
Enþ1;m
y ¼ cn;mx ;

dtgyy T nþ1
2
;m

y;x

"
� T nþ1

2
;m

y;z

dt T
nþ1

2
;m

z;x þ ezx
ezz

#
Enþ1;m
x þ 1

"
� dt gyyT

nþ1
2
;m

y;z

dt T
nþ1

2
;m

z;y

ezz

 !#
Enþ1;m
y ¼ cn;my :

ð3:6Þ

This system has to be solved for each time-step. To simplify the previous expression, we rewrite the system

as

a
nþ1

2
;m

1 Enþ1;m
x þ dta

nþ1
2
;m

2 Enþ1;m
y ¼ cnþ

1
2
;m

x ;

dta
nþ1

2
;m

3 Enþ1;m
x þ a

nþ1
2
;m

4 Enþ1;m
y ¼ cnþ

1
2
;m

y ;

the coefficients a
nþ1

2
;m

1 , a
nþ1

2
;m

2 , a
nþ1

2
;m

3 and a
nþ1

2
;m

4 depending only on variables computed before time tnþ
1
2.
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Remark 5. The density matrix q is bounded and so are the functions T
nþ1

2
;m

d1;d2
, for all directions d1, d2 and time

n. Thus the determinant of system (3.6) goes to 1 as dt goes to 0. For reasonably small values of dt, system
(3.6) is not singular.

At each step of the scheme derivation, we take care to make only approximations of at least order 2.

Proposition 6. The following discretization scheme is of order two.

qnþ1
2 ¼ S

1
2
H0

SHS
1
2
H0

qn�1
2;

B
nþ1

2
;mþ1

2
x � B

n�1
2
;mþ1

2
x

dt
¼

En;mþ1
y � En;m

y

dz
;

B
nþ1

2
;mþ1

2
y � B

n�1
2
;mþ1

2
y

dt
¼ �En;mþ1

x � En;m
x

dz
;

Enþ1;m
x

Enþ1;m
y

 !
¼

a
nþ1

2
;m

1 dta
nþ1

2
;m

2

dta
nþ1

2

3 a
nþ1

2

4

0
@

1
A

�1

c
nþ1

2
;m

x

; c
nþ1

2
;m

y

0
@

1
A;

where the operators SH0
and SH were defined during the derivation of the splitting of Bloch equation (3.5) in

the previous section and the coefficients a1, a2, a3, a4, cx and cy in Eqs. (3.6).
4. Boundary conditions

The equations describing the propagation of a laser pulse in our medium are then fully discretized. We

now have to write the various boundary conditions before running some numerical experiences.We con-

sider that before traveling through the medium, the wave-field propagates through a linear medium as
shown in Fig. 1. This greatly simplifies the boundary conditions and the introduction of an incident wave.

4.1. Boundary conditions

To approach the physical conditions, in which the boundaries are transparent for the wave, we shall use

the classical Silver–M€uller condition. We use the discretization described in [11,23]. We denote by ~c the

speed of light in the linear medium.

At the domain entry, this is written as

E� Ei � ~cðB� BiÞ � n ¼ 0;

where ðEi;BiÞ is the incident electromagnetic field, n is the outer normal vector to the domain.

The exit condition is written as

E� ~cB� n ¼ 0:

By detailing for each coordinate, it gives

Ex � ~cBy ¼ 0;

Ey þ ~cBx ¼ 0;

at the right boundary (exit) of the domain and
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Ex � Ei;x þ ~cðBy � Bi;yÞ ¼ 0;

Ey � Ei;y � ~cðBx � Bi;xÞ ¼ 0;

at the left boundary of the domain.

This raises a problem since the fields E and B are not discretized on the same points.

In a first step, let us study the case of the right boundary. As the magnetic field B is discretized on points

interior to the domain, we need to discretize as B in space

ExðtÞM�1
2 � ~cBM�1

2
y ¼ 0;

EyðtÞM�1
2 þ ~cBM�1

2
x ¼ 0;

which we approximate by

1

2
ðExðtÞM�1 þ ExðtÞMÞ � ~cBM�1

2
y ¼ 0;

1

2
ðEyðtÞM�1 þ EyðtÞMÞ þ ~cBM�1

2
x ¼ 0:

For the time variable, we discretize as the electric field E, i.e. for integer values of the time

1

2
ðEnþ1;M�1

x þ Enþ1;M
x Þ � 1

2
~cðBnþ1

2
;M�1

2
y þ Bnþ3

2
;M�1

2
y Þ ¼ 0;

1

2
ðEnþ1;M�1

y þ Enþ1;M
y Þ þ 1

2
~cðBnþ1

2
;M�1

2
x þ Bnþ3

2
;M�1

2
x Þ ¼ 0:

At this stage, the values of the magnetic field B at time nþ 3
2
are not computed. Therefore, using the

Faraday equations (2.8), we get

Bnþ3
2
;M�1

2
x ¼ Bnþ1

2
;M�1

2
x þ dt

dz
ðEnþ1;M

y � Enþ1;M�1
y Þ;

Bnþ3
2
;M�1

2
y ¼ Bnþ1

2
;M�1

2
y � dt

dz
ðEnþ1;M

x � Enþ1;M�1
x Þ:

Finally, we obtain

Enþ1;M
x ¼ 1

1þ ~cdt
dz

2~cBnþ1
2
;M�1

2
y

 
� 1

 
� ~cdt

dz

!
Enþ1;M�1
x

!
;

Enþ1;M
y ¼ 1

1þ ~cdt
dz

 
� 2~cBnþ1

2
;M�1

2
x þ

 
� 1þ ~cdt

dz

!
Enþ1;M�1
y

!
:

Using the same method, we can express the condition at the left boundary

Enþ1;1
x ¼ �1

1þ ~c dt
dz

2~cBnþ1
2
;3
2

y

�
þ 1

�
� ~c

dt
dz

�
Enþ1;2
x � 2Enþ1;1

i;x � 2~cBnþ1;1
i;y

�
;

Enþ1;1
y ¼ 1

1þ ~c dt
dz

2~cBnþ1;3
2

x

�
� 1

�
� ~c

dt
dz

�
Enþ1;2
y þ 2Enþ1;1

i;y � 2~cBnþ1;1
i;x

�
:

Remark 7. There is no need for additional relations to satisfy the conditions of continuity across the in-

terface between the crystal and the linear medium (see Fig. 1).
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5. Numerical experimentations

In order to validate the scheme and the corresponding code, let us proceed with several experimenta-
tions. In a first step, we restrict ourselves to the isotropic case and compare the code with results obtained in

[5]. We then study some aspects of the anisotropy. Finally, we use the code in the specific case of a KDP

crystal. More experimentations (such as self-induced transparency as in [24]) can be found in [20].

5.1. Isotropy and degeneracy

In this experiment, we consider a model with two distinct energy levels and four states. The lowest level is

threefold degenerate. Each state of the lowest level is coupled with the second level in only one direction.
The full description is given in Fig. 3. All other connections vanish.

Remark 8. Compared to the classical case of two level atoms with non-degenerate eigenvalues as in [27], this
case really describes an isotropic medium. In [27] indeed, the direction corresponding to the unique non-

vanishing vector of the dipolar moment matrix is predominant. One can overcome this difficulty by a pos-

teriori choosing this direction parallel to the incoming electric field E. Thus for this polarization, the material

acts as an isotropic medium. The model we present does not favor any direction of the polarization.

We take the following dipolar moment matrix l in (2.3)

l : 10�29

0 0 0

1

0

0

0
@

1
A

0 0 0

0

1
0

0
@

1
A

0 0 0

0

0
1

0
@

1
A

1
0

0

0
@

1
A 0

1

0

0
@

1
A 0

0

1

0
@

1
A 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

C:m:

Hence the medium should act as an isotropic crystal. Let us try several angles for the incoming wave to

prove this fact. We take a powerful (108 V/m) and short (1 fs) Gaussian laser pulse propagating through 25

lm of the medium.

When only changing the two angles h and /, the result remains exactly the same. For instance, let us take

zero for h and /.
The results are similar for any angle h or / and for the other physical values considered (such as the

density matrix). Numerically, the medium acts effectively as an isotropic medium (see Figs. 4 and 5).
Fig. 3. Connections between atomic levels.
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5.2. Propagation in a KDP crystal

In [4], we described a Maxwell–Bloch model for wave-propagation in nonlinear crystals applied to the

KDP crystal. Compared to macroscopic models like [7], this microscopic model accounts for microscopic

physics in a fairly accurate way. A true difficulty in this microscopic approach was to obtain all the
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microscopic information on the quantum structure of the crystal. Indeed, the only available data on the

crystal are linear and quadratic susceptibilities from [10,13–16,18,22,26] for instance, and its group of

symmetry [1]. In [4], we had to recover microscopic information such as the dipolar moment matrix l

from the dispersion properties of the material. We first related the first and second order susceptibilities

to the dipolar moment matrix as in [8]. We then postulated the most simple quantum-state structure able

to reproduce the symmetry and anisotropy properties of the KDP. In the model described [4], the

nonlinear effects are not restricted to linear and quadratic ones as in the case of many models based

on optical susceptibilities. However, microscopic model simulations are much more computationally

expensive.

Since the writing of [4], we have found that the model is quite sensible to the parameters. Indeed for

small densities N, we have to take a rather fine mesh to obtain satisfying results. The dipolar matrix l is
computed from the density N and the linear and quadratic susceptibilities of the crystal [4]. The origin of

this problem is difficult to find as there are many phenomena involved (numerical dispersion disturbing the

phase matching, the effects of optical rectification exciting lower frequencies, the simplicity of our model

which leads to large elements in the dipolar moment matrix l . . .).
For the following runs, we have taken N ¼ 1:103272714� 1030, x21 ¼ 4:712388980� 1013 Hz,

x31 ¼ 1:674041079� 1016 Hz, l1
ð1;2Þ ¼ �0:153314735� 10�28 m and l3

ð3;2Þ ¼ �0:756543053� 10�29 m. The

remaining elements of the dipolar matrix l are computed by the relations written in [4]. We take 100 points

per wavelength (and thus 50 in the second harmonic). For these parameters, the results do not change with
finer meshes or smaller time steps.

The crystal is surrounded with a linear material. In practice, the medium parameters are chosen so as to

minimize the reflexion of the wave at the interfaces with the KDP. In the following figures, the wave is only

plotted inside the crystal.

5.2.1. A Pockels cell

In this experiment, a static electric field is applied in the crystal. We show an effect of the quadratic

susceptibility of the crystal known as the Pockels effect. This static field is parallel to the direction of
propagation z, which is also the direction of the optical axis of the crystal. We take a field of 109 V/m.

The incoming wave is a short (20 fs) Gaussian pulse, whose max value is 103 V/m. The angle of incidence

is zero.

Because of the static field, the polarization of the incoming wave will rotate as it propagates through the

crystal. We obtain a Pockels cell [9]. The incoming wave is polarized along the direction y. As the wave

propagates, the polarization rotates as shown in Fig. 6. After 23 lm, the wave is almost entirely polarized

along the x direction.

As expected, we observe a rotation of the polarization in Fig. 6.

5.2.2. Second harmonic generation

To further check the capabilities of our numerical method, let us study the second harmonic generation

of an ultrashort Gaussian pulse in a KDP crystal.

In [7], a similar experience is performed using a model based on nonlinear Maxwell equations. In this

run, the electric field E is a Gaussian pulse of amplitude 1010 V/m lasting 20 fs. We use the model described

in [4], which gives a dipolar matrix l for a KDP crystal from the macroscopic susceptibilities of the crystal

obtained from [26].
Since we want to observe second harmonic generation, the phase matching condition has to be satisfied.

For the second harmonic, in the KDP, the values of angles between the direction of propagation of the

wave and the optical axes of the crystal are, for a phase match of type I [7], h ¼ 41�, / ¼ 45�. The crystal is
rotated to ensure the phase match. Finally, in order to keep a normal incidence for the wave, the crystal is

cut perpendicularly to the direction of propagation.
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Fig. 6. Evolution of the electric field (Ey and Ex) in a Pockels cell.

O. Saut / Journal of Computational Physics 197 (2004) 624–646 641
The electric field E is polarized along the y-axis. The second harmonic wave and all harmonics of even

order should appear in the x-axis. Cubic harmonic and greater odd harmonics should also be observed

along the y axis.
First, as shown in Fig. 7, the evolution of the second coordinate of the electric field is plotted for different

times. The intensity of the field decreases as the light travels the crystal (as the length of propagation is

short, this effect is rather difficult to observe).
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We now consider the Fourier transform of the wave field. The unit of frequency corresponds to the

frequency of the incoming wave. In the y-coordinate (as shown in Fig. 8), the amplitude of the Fourier

transform corresponding to the frequency of the incoming wave decreases as the wave travels through the

crystal. Moreover, third harmonic generation is observed.
1 2 3
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Fig. 8. Evolution of the Fourier transform of the component Ey of the electric field E (which should contain odd harmonics) in an

experiment of second harmonic generation at the phase matching angle.
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We then show the evolution of Ex. At the initial time, there is no field along this coordinate as the wave is
initially polarized along the y direction. But as the wave goes through the crystal, the amplitude of this

component increases, as shown in Fig. 9, where the electric field Ex is drawn at various times. At the phase

matching angle, the intensity of the second harmonic increases with z. We have also plotted the theoretical

amplitude (see Chapter 2 of [8] for detail) of the second harmonic, thus we can visualize the accuracy of our

model.

In Fig. 10, we have plotted the Fourier transform of Ex at different times. The frequency plotted is

relative to the frequency of the incoming wave. Over time, the intensity of the second harmonic increases.

We can also observe the appearance of a weak fourth harmonic and the effect of optical rectification in the
lower frequencies of the spectrum.

So far, the numerical results are those expected and are similar to the results obtained by macroscopic

models such as in [7] for the first two nonlinear effects. In this experience, we have observed higher non-

linearities than the linear and quadratic ones, which are the only ones observable by classical nonlinear

Maxwell model such as in [7].

To push the test a little further, we change the angle of the wave and carry out the same experiment. The

phase matching condition is no longer satisfied, we take h ¼ 29:64�, / ¼ 33:54�. In Fig. 11, we plotted the

electric field for ten different times. As there is no phase matching any longer, the second harmonic is
destroyed before the wave leaves the crystal.

At the beginning of the experiment, the intensity of the field Ey decreases as in Fig. 7. But as time goes

on, the effects of the phase mismatch start to affect the wave and the second harmonic is turned back into

the fundamental harmonic.

As we could have expected, in Fig. 11, the intensity of the field starts by increasing but after a certain

time, it goes to zero.

To compute the coherency length, we inject a sinusoidal wave in the crystal in order to have a mono-

chromatic wave. To reduce the effects of higher nonlinearities, we take a field E of 105 V/m. The coherency
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experiment of second harmonic generation at the phase matching angle.
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Fig. 11. Evolution of the component Ex of the electric field E when the phase matching condition is no longer satisfied. The electric

field is plotted every 3.42058� 10�17 s.
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length is equal to half the distance between knots of Ex. For this experiment, we computed a coherency

length of 33.8 lm. In Fig. 12, we have plotted the first component of the electric field containing the second

harmonic after 4.195� 10�13 s.

Finally, we have obtained the results expected.
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Fig. 12. Evolution of the component Ex of the electric field E when the phase matching condition is not satisfied. The incoming wave is

sinusoidal.
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6. Conclusion

In this paper, we derived a scheme for the Bloch model in the case of anisotropic media. We had to

extend the existing scheme [5,27] used for isotropic media. Another problem was to examine the angle

between the direction of the wave propagation and the optical axis of the crystal, in order to study the phase

mismatch effects on the wave.

Besides, we attempted to keep a reasonably accurate scheme, by describing the steps needed to ensure a
second order scheme. We also wrote the boundary and interface relations for our model. Once the scheme

written, we proceeded with numerical experiments ranging from the case of an isotropic medium to a

complete simulation of the propagation of a laser pulse through a crystal of KDP. As the model offered in

[4] can be usually extended to a large class of materials, the scheme described in this paper could also be

applied to various anisotropic media.

However, this model involves heavy numerical computations, especially in the solving of Amp�ere (2.6)

and Bloch (2.5) equations. It shall thus be used either for short propagation distance or as a validation tool

for simpler macroscopic models. For instance, it could be useful in finding dispersion relations for non-
linear Maxwell models as in [7]. However, the computation times shall be significantly reduced. Indeed, the

Bloch equation (2.5) can easily be parallelized: the space variable acts as a parameter, the computations for

each space-step could be performed at the same time. The second bottleneck in term of performance is the

resolution of the Amp�ere system of Eqs. (2.6). Even if some simple improvements can clearly be obtained

through parallelism, this parallelization is beyond the scope of this article.
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